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Definition. A subset S C R?® is a reqular surface if, for each p € S there exists a
neighborhood V' in R? and a map x : U — V' NS of an open set U C R? onto VNS C R3
such that

1. x is differentiable, that is, if we write
x(u,v) = (x(u,v),y(u,v), z(u,v)), (u,v) € U,

the functions z(u,v),y(u, v), z(u, v) have continuous partial derivatives of all orders
in U.

2. x is a homeomorphism. Since x is continuous by condition 1, this means that x has
an inverse x ' : V' NS — U which is continuous.

3. (The regularity condition.) For each ¢ € U, the differential dx, : R* — R? is

one-to-one. m&“h\ !h

Definition. Given a differentiable map F': U C R™ — R™ defined on an open set U of
R™ we say that p € U is a critical point of F' if the differential dF}, : R® — R™ is not a
surjective mapping (that is, it has a nontrivial kernel). The image F'(p) € R™ of a critical
point is called a critical value of F. A point of R™ which is not a critical value is called
a reqular value of F.

In the case of f: U C R® — R, to say that df, is not surjective is equivalent to saying
that the partials f, = f, = f. = 0 at p. Hence, a € f(U) is a regular value if and only if
fzs fy, f» do not vanish simultaneously at any point in the inverse image.

Proposition 1. If f: U C R3 — R is a differentiable function and a € f(U) is a reqular
value of f, then f~'(a) is a reqular surface in R>.

Proposition 2. Let p € S be a point of a reqular surface S and let x : U C R? — R3 be
a map with p € x(U) C S such that  is differentiable and for each q € U, the differential
dx, : R* = R® is one-to-one. Then if x is one-to-one, then x~' is continuous.

Remarks. It is often easier to show that a set is regular surface by showing it is the
inverse image of a regular value by the first proposition above. The above proposition
then means that if we already know that S is a regular surface, and we have a candidate
x for a parameterization, then we do not need to check that #~! is continuous, as long as
the other conditions hold.
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MATH4030 Differential Geometry 2

1. (From exercise 2-2.7 of [Car16]) Let f(z,y,2) = (z +y + 2 — 1)

(a) Locate the critical points and critical values of f.

(b) For what values of ¢ are the sefs (.4, 2) = ¢ a regular surface?
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2. Show that the torus T, generated by rotating a circle of radius r about an axis at
fixed distance a > r is a regular surface by showing it is the inverse image of a
regular value of a suitably chosen differentiable function f : R3 — R.
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MATH4030 Differential Geometry 4

3. (Exercise 2-2.4 of [Car16]) Show that for f(z,y,2) = 22, 0 is not a regular value of
f, but f71(0) is a regular surface.
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4. (From exercise 2-2.11 of [Car16]) Show that the set S = {(z,y,2) : 2 = 2? — y?*} is
a regular surface and check that the following is a parameterization for S:

x(u,v) = (u4v,u — v, 4uw), (u,v) € R?

P& Bt o S i ()ueju,\am Sw),“tea.cg
S= £7(0) \gee floyz) =2 - chz el

\&%/‘Q‘Z«WVM GX»,E

(onditn 00 X(un) € S5 ey - (u-v) =
Condibion [+ XWN) = (wtv, W=y Amu\

s, /

Condition 2 g - gel

%L%LA

el Ol )
T, &—t =AY

RS &x%?s e — & - one

‘ku\/ /



